4. Recognition of adiabatic process of outflow from nozzle in range $\beta(-1)$

4.1 Experiment description

Experiment is carried out on test stand as shown in fig. 1. Ambient air with pressure "po" and temperature "To" goes through a flow-meter (1) to the nozzle (2). Flow is made by vacuum pump (5) which gives negative pressure " p_2 " out of nozzle. This pressure is controlled by valve (4) at the tank (3).

Drops of pressure are measured by differential manometers (U-pipes type). So, Δh_1 means drop of pressure inside nozzle and Δh_2 – pressure difference between in and out points of nozzle.

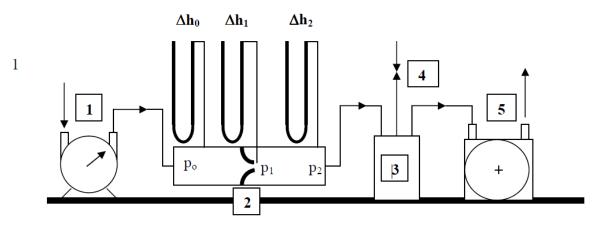
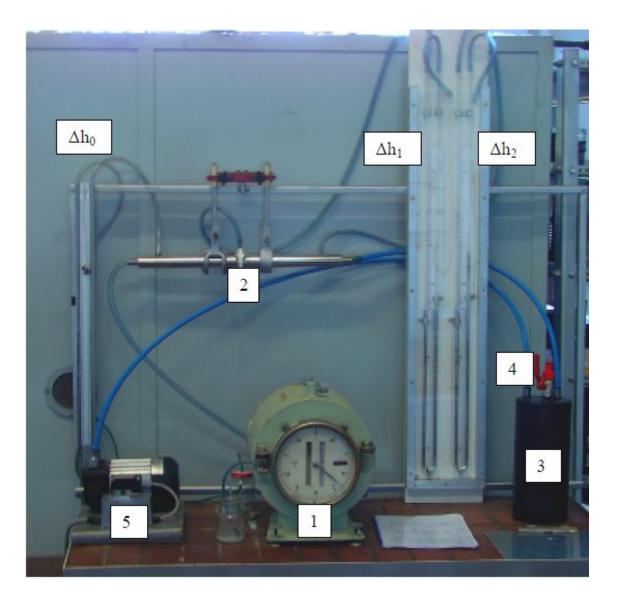


Fig 1 Layout of test stand to recognize adiabatic nozzle outflow


4.2 Experiment description

Necessary steps to carry out a test:

- 1. turn the vacuum pump (5) on,
- 2. open minimally the valve (4) so the Δh_2 reaches 40 mmHg,
- 3. be sure that pressure is stabilized and record drops of pressure Δh_1 and Δh_2 k
- 4. then, measure air flow using flow-meter (1) and stop watch (flow per 1 minute),
- 5. repeat measurement approximately 10 times, increasing drop of pressure Δh_2 for around 40 mmHg,

To pass a remark when $\beta = \frac{p_2}{p_0}$ will reach $\beta_{cr} \approx 0.5$

 β_{cr} is called critical (threshold) value of flow. Around that point outflow should be steady as well as pressure "p₁" independent on decreasing "p₂".

When the critical parameter (i.e. $\beta_{cr} \approx 0.5$) are obtained at the narrowest point in the nozzle, the mass flow (\dot{m}) exiting the nozzle should exhibit a constant value. the pressure p_1 is also constant, regardless to farther decrease of the pressure behind the nozzle p_2

4.3 Elaboration of test data

4.3.1 The measured pressure drop ($\Delta h_{0,1,2}$) shall be converted using following equations:

$$\Delta p_{0} = \Delta h_{0} \cdot 9,81 \cdot 13,6 \ ^{N}/_{m^{2}}$$
$$\Delta p_{1} = \Delta h_{1} \cdot 9,81 \cdot 13,6 \ ^{N}/_{m^{2}}$$
$$\Delta p_{2} = \Delta h_{2} \cdot 9,81 \cdot 13,6 \ ^{N}/_{m^{2}}$$

Note that the pressure drop $\Delta h_{0,1,2}$ are expressed in **mmHg** unit.

4.3.2. Calculate the air pressures p_1 and p_2 i.e. at the narrowest point of the nozzle and behind the nozzle respectively. Following equations shall be used for this purpose:

$$p_0 = p_0 - \Delta p_0$$
$$p_1 = p_1 - \Delta p_1$$
$$p_2 = p_2 - \Delta p_2$$

4.3.2 Compute factor β for each measurement:

$$\beta = \frac{p_2}{p_0}$$

and critical value of β_{cr}

$$\beta_{cr} = \left(\frac{2}{k+1}\right)^{\frac{k}{k+1}}$$

Where: k is the exponent of adiabatic. For air the; k=1,4

4.3.3 Using Clapeyron formula calculate mass air flow \dot{m} , $\frac{kg}{s}$:

$$\dot{m} = \frac{p_0 \dot{V}}{RT_0}$$

Wherer:

 $p_o, T_o[N/m_2; K]$ – pressure and temperature of ambient air,

 $\dot{V} [m^3/s]$ – volumetric air flow,

R[J / kg K] – individual gas constant for ambient air.

4.3.4 Draw diagram $\dot{m} = f(\beta)$ and show on it β_{cr}

An example of test table

Lab_4 Recognition of adiabatic process of outflow from nozzle in range $\beta(\text{-}1)$

$\mathbf{p}_{0} = \dots \mathbf{T}_{0} = \dots \mathbf{T}_{0} = \dots$										
lp	Δh_0	Δh_1	Δh_2	Ϋ	Ϋ́	p_0	p_1	p_2	В	'n
	mm Hg	mm Hg	Δh_2 mm Hg	dm ³ /	m ³ /s	Ра	Ра	Ра	-	kg/s
1										
2										
3										
4										
5										
6										
7										
8										
9										
10										