5. Isothermal process

5.1. Introduction

The aim of the experiment is verification of the Boyle– Mariotte law, i.e. the isothermal process (T=idem), expressed with equation:

$$p_i V_i = idem$$

5.2. The experiment station description

The experiment station contains the elastic U-tube manometer, partially filled with mercury (fig. 1). The rigid left arm of U-tube manometers is ended with a valve (Z) opened and closed manually. Closing the valve causes occurrence of a reservoir of the gas. The reservoir has constant cross section and adjustable, by mercury meniscus positioning, height (L_i). The change of meniscus position is obtained by moving the right arm of the manometer.

5.3. Experiment description

During the experiment the volume of the gas reservoir above the mercury meniscus in the left arm of the U-tube manometer shall be increased by lowering the right arm of the manometer. The volume of the gas is proportional to the height of the reservoir (L_i) .

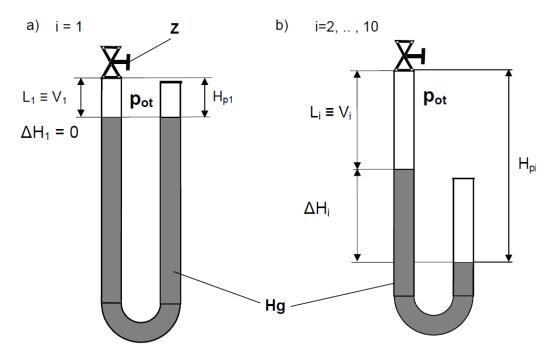


Figure 1. The schematic representation of the test station

The tested gas (air) is in the left arm of the U-tube (fig. 1a). The initial pressure (i=1) is equal to the ambient pressure $p_1=p_0$ (valve opened). The gas volume change is performed after closing the valve (Z), before lowering the right arm of the U-tub (fig. 1b). The height of the mercury meniscus (H_{pi}) shall be determined for few corresponding, arbitrary values of (L_i). The value of pressure(p_i) of the gas in the reservoir in left arm of the U-tube is the algebraic sum of the ambient pressure p_{ot} and pressure which represents the height of mercury column (ΔH_i) in the U-tube (fig. 1b:the density of mercury is $\rho = 13.6 \frac{g}{cm^3}$, gravitational acceleration is $g = 9.81 \frac{m}{s^2}$)

5.4. Elaboration of results

Lab_5 Isothermal process

Group hour:

Date: p_{ot} = t_{ot} = T_{ot} =										
i	1	2	3	4	5	6	7	8	9	10
L_i										
mm										
H_{pi} Mm										
Mm										
ΔH_{pi} mmHg										
mmHg										
P_i										
MPa										
X										
Y										

Based on obtained resold calculate the pressure of tested gas pi

1. Present the results as dependence Y=f(X) on a coordinate system, where:

$$X = \frac{L_1}{L_i}$$

$$Y = \frac{p_i}{p_1}$$

2. Establish the trend line as a representation of first degree polynomials as well as \mathbb{R}^2 .

If the law of Boyle– Mariotte is fulfilled, the points on the coordinate system should be gathered around straight line which starts at the beginning of the system.