Thermodynamics list 1

- 1. The manometric pressure of a gas in a tank is $p_m=0.5MPa$. The ambient pressure is $p_0=750mmHg$. Calculate the absolute pressure of a gas in the tank. The specific gravity of mercury $\gamma_{Hg}=132\,N/dm^3$. Present all mentioned pressures on a graph.
- 2. Calculate the dynamic pressure (p_d) of a gas with density of $\varrho=0.8\,{\rm kg}/{\rm m}^3$, flowing through
 - a pipeline with diameter of d=200mm. The volumetric gas flow rate is $\dot{V}=0.5~m^3/_S$.
- 3. Calculate air velocity in a pipeline of diameter d = 200 mm, if the static pressure $p_s = 1000Pa$, and total pressure $p_t = 1100Pa$. The air density is $\varrho = 1{,}195 \frac{kg}{m^3}$.
- 4. Calculate the air velocity knowing that $\dot{V}_0=2000~um^3/h$. Calculate the dynamic pressure (p_d) if t=500°C, p=2 bar, air density in standard condition is $\varrho=1,29^{kg}/m^3$, pipeline diameter is d=250mm.
- 5. The air with temperature of t=100°C , static pressure of $p_s=500mmH_2O$ and dynamic pressure of $p_d=20mmH_2O$ flows through a pipeline with diameter of d=0,5m. Calculate volumetric, and mass flow rate if the ambient pressure is $p_0=750mmHg$, air density in the standard condition is $\varrho=1,195$ $kg/_{m^3}$.
- 6. Calculate the volumetric flow rate and the static pressure of gas with a density of $\varrho=1.4~^{kg}/_{m^3}$ flowing through a pipeline with diameter of d=0,2m at speed of $v=20~^{m}/_{s}$ knowing that the total pressure is $p_t=0.01~bar$.
- 7. Calculate the height of manometric liquid with density of $\varrho=850\,{}^{kg}/_{m^3}$ if the barometric pressure is $p_0=1000hPa$ and the absolute pressure is p=1,5 bar.
- 8. The manometric pressure of a gas in a tank is $p_m=0.5Mpa$. The ambient pressure is $p_0=745mmHg$. Calculate the absolute pressure of a gas in the tank. The specific gravity of mercury $\gamma_{Hg}=132 \, ^N/_{dm^3}$.
- 9. Calculate the absolute pressure of a gas in a tank if the liquid column manometer height is h = 500 mm, density $\varrho=1240 \frac{kg}{m^3}$, and the ambient pressure $p_0=1$ bar.
- 10. The total pressure of a gasoline, measured by means of Pitot tube is $p_t = 60mmHg$, the static pressure is $p_s = 0$. The ambient pressure is $p_0 = 1045hPa$. Calculate the velocity of gasoline.