Thermodynamics list 2

- 1. A tank of volume $V=0.8m^3$ is inflated with compressed air with manometric pressure of $p_m=0.4MPa$ and temperature of $27^{\circ}C$. Calculate the amount of air using following units: kg, kmol, um^3 (conventional cubic meters). The ambient pressure is $p_0=1\ bar$.
- 2. A tank of volume $V=20dm^3$ is inflated with a gas with absolute pressure of $p_1=50bar$ and themperature of $t_1=120^{\circ}C$. After adding some amount of gas into the system the pressure increased to $p_2=100bar$ and temperature to $t_2=200^{\circ}C$. Calculate the amount of added gas in kilo moles.
- 3. Two tanks with volume of $V=4m^3$ are inflated with nitrogen N₂. The parameters within the firs tank are: the absolute pressure $p_1=5bar$, and $t_1=150^{\circ}C$, whereas parameter in second tank are: $p_2=3.5bar$ and $t_2=10^{\circ}C$. Which tank contains greater mass of nitrogen?
- 4. A tank of volume $V=5m^3$ is inflated with a monoatomic perfect gas with initial parameters of $p_1=0.15MPa$ and $T_1=288K$. As a consequence of an additional heat delivered into the system, the pressure increased up to $p_2=0.28MPa$. Calculate numbers of kilo moles of the gas and the final temperature.
- 5. The gas within a cylinder was heated from the temperature of $T_1 = 310K$ up to such temperature that volume of the gas has doubled. What was the final temperature?
- 6. The pressure and temperature of air was measured after pumping it into the tank. The measured pressure and temperature are $T_1 = 480K$, $p_1 = 8.2 MPa$. What will be the pressure in the cylinder when the air cools to a temperature of $T_2 = 290K$?
- 7. Weight of the tank with nitrogen decreased by 5 kg due to the release of gas into the environment at a temperature of 300 K. The pressure drop measured on the manometer when the gas temperature equalled with the ambient temperature is $\Delta p = 0.5 MPa$. Calculate the volume of the tank.
- 8. An engine power was measured by means of water brake. The water stream flowing through the brake is $\dot{m}=5\,^kg/_S$. The temperature of water is $t_1=15\,^\circ C$ at the brake inlet, whereas at the brake outlet $t_2=50\,^\circ C$. Assuming that the heat loss is 10% of overall engine power, calculate the effective power of the engine.
- 9. During heating of some mass of gas for $\Delta T = 2K$ at p=const its volume increased by 0.005 of the initial value. Calculate the initial gas temperature.

10. A vertical cylinder, closed by a moving with no friction piston is filled with nitrogen with initial parameters of $V_1=0.05m^3$, $p_1=0.12\,MPa$, $T_1=288K$. Due to heat delivery into the cylinder volume of the gas increased up to $V_2=0.07m^3$. Calculate the number of kilo moles and the temperature after heat delivery.