Thermodynamics list 4

- 1. Calculate the absolute, technical and effective work of a process occurring within a cylinder knowing that this process is govern by $pV = 4 \cdot 10^5$. Known are: initial pressure $p_1 = 1,0MPa$, final pressure $p_2 = 0,1MPa$, ambiet pressure $p_0 = 950hPa$.
- 2. A vertical cylinder with movable piston, loaded with constant weight is filled with a gas. The gas enclosed within this cylinder changed its volume from $V_1 = 0.1m^3$ to $V_2 = 1m^3$ due to heat delivery. The manometric pressure of the gas is p = 0.2 MPa. The increase of internal energy is $\Delta U = 3000kJ$. Calculate the heat delivered during the process (Q_{1-2}) knowing that the ambient pressure is $p_0 = 0.1 MPa$.
- 3. Calculate the specific internal energy and specific enthalpy of a carbon dioxide at the temperature of 300°C. The gas should be considered as ideal.
- 4. Calculate the heat flux absorbed by a combustion engine with effective power of $N_e = 3000kW$. This engine consumes 30% of enthalpy flux for converting the fuel into the mechanical work, 35% is absorbed by the water for engine cooling.
- 5. Calculate the power of an ideal piston engine with swept volume of $V_s = 0.04m^3$ in which gas decompresses from $p_1 = 0.9 MPa$ to $p_2 = 0.1 MPa$. The cylinder filling is complete when the piston traveled x=20% of total swept distance. The process of the gas within the engine can be expressed as rectilinear dependence p(V). The rate of rotation is $\omega = 20s^{-1}$.
- 6. Helium has undergone a reversible isobaric process from the stage: p = 7bar, $t_1 = 20^{\circ}$ C, $V_1 = 15 dm^3$ to the stage where $t_2 = 827^{\circ}$ C. Considering this gas as perfect calculate:
 - The absolute work of the process,
 - The amount of heat delivered to the medium ,
 - The technical work,
 - The change of internal energy.
- 7. Oxygen has undergone a reversible isobaric process from the stage: p = 4bar, $t_1 = 20$ °C, $V_1 = 30 dm^3$ to the stage where $V_2 = 180 dm^3$. Considering this gas as perfect calculate
 - The temperature of the oxygen after the process,
 - The absolute work of the process,
 - The amount of heat delivered to the medium .
- 8. Ammonia with mas of 1,2 kg was isovolumic cooled form $t_1 = 300$ °C to the stage where
 - $t_2 = 50^{\circ}$ C, $p_2 = 0.4 \ bar$. Considering ammonia as perfect gas calculate:
 - The volume of the medium,
 - The pressure at the beginning of the process,
 - The amount of heat delivered into the medium,
 - The change of internal energy.