Thermodynamics list 6

1. Calculate the dynamic pressure of a gas with density of $\rho = 0.6 \frac{kg}{m^3}$, which flows through

the pipeline with diameter of d= 300mm. The volumetric flow rate is $\dot{V} = 0.5 \frac{m^3}{s}$.

- 2. Calculate the velocity of the air flow within a pipeline with diameter of d=200mm when the static pressure is p=700 Pa, the total pressure is $p_t = 1200$ Pa. The density of the air is $\rho = 1,195 \frac{kg}{m^3}$.
- 3. Calculate the velocity of air with $\dot{V_0} = 2000 \, um^3 / h$. Calculate the dynamic pressure if the temperature is *t=400°C*, pressure is *p=3 bar*. The density of air in standard conditions is $\rho = 1,29 \, kg / m^3$.
- 4. A tank with volume of $V = 0.6 m^3$ is inflated with compressed air with the pressure of $p_m = 0.4 MPa$ and the temperature of 27°C. Calculate the amount of air within the tank using kg, kmol, and um^3 units. The ambient pressure is $p_0 = 1 bar$.
- 5. The weight of a container filled with nitrogen decreased for 3 kg as a consequence of releasing some amount of gas into the ambient with temperature of *T*=300K. The pressure drop detected on the manometer after the temperature equalized with ambient temperature is $\Delta p = 0.4 MPa$. Calculate the volume of the tank.
- 6. The water brake was used for determining the power of an engine. The water flux flowing through the brake is $\dot{m} = 6 \frac{kg}{s}$. The water temperature at the brakes inlet is $t_1 = 20^{\circ}$ C,

the temperature at the brake outlet is $t_2 = 50$ °C. Assuming that heat loss in the brake is 10% of the engine power calculate the effective power of the engine.

- 7. Calculate the absolute, technical and effective power of a process performed by a gas within a cylinder when the relationship $pV = 4 \cdot 10^4$ is valid. Known are: the initial pressure $p_1 = 1,0 MPa$, the final pressure is $p_2 = 0,1 MPa$, the ambient pressure is $p_0 = 950 hPa$.
- 8. Calculate the power of ideal piston engine with swept volume of $V_s = 0.04m^3$ in which the gas decompresses from $p_1 = 0.9 MPa$ to $p_2 = 0.1 MPa$. The cylinder is filled when the piston travels I=20% of swept distance. The process of a gas within the engine can be expressed with rectilinear relationship of p(V). The frequency of engine rotation is $\omega = 20s^{-1}$.

- 9. The helium has undergone an isobaric, reversible process from p = 7bar, $t_1 = 20^{\circ}$ C, $V_1 = 15 dm^3$ to the stage where t_2827° C. Considering the gas as perfect calculate:
 - The absolute work of the process,
 - The amount of heat delivered into the medium,
 - The change of the internal energy.
- 10. The oxygen has undergone an isobaric, process from p = 3bar, $T_1 = 300K$, $V_1 = 50 dm^3$ to the stage where $V_2 = 180 dm^3$. Considering the gas as perfect calculate:
 - The gas temperature after the process,
 - The amount of heat delivered into the medium.